Joint prediction of observations and states in time-series: a partially supervised prognostics approach based on belief functions and KNN
نویسندگان
چکیده
Forecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current degradation. For each case, specific techniques exist. In this paper, we propose an approach based on case-based reasoning that jointly estimates the future values of the continuous signal and the future discrete modes. The main characteristics of the proposed approach are the following: 1) It relies on the K-nearest neighbours algorithm based on belief functions theory; 2) Belief functions allow the user to represent his partial knowledge concerning the possible states in the training dataset, in particular concerning transitions between functioning modes which are imprecisely known; 3) Two distinct strategies are proposed for states prediction and the fusion of both strategies is also considered. Two real datasets were used in order to assess the performance in estimating future break-down of a real system.
منابع مشابه
Joint prediction of observations and states in time-series based on belief functions
Forecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current d...
متن کاملPrognostic by Classification of Predictions Combining Similarity-Based Estimation and Belief Functions
Forecasting the future states of a complex system is of paramount importance in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous (the value of a signal) or discrete (functioning modes). For each case, specific techniques exist. In this paper, we propose an approach called EVIPRO-KNN based on case-based...
متن کاملTidal prediction using time series analysis of Buoy observations
Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...
متن کاملa Comparison Study Between the Joint Probability Approach and Time Series Rainfall Modelling in Coastal Detention Pond Analysis (RESEARCH NOTE)
In tidally affected coastal catchments detention pond should be provided to store flood surface water. A comparison between the full simulation approach based on the joint probability method and time series rainfall modeling via the annual maximum of pond level was undertaken to investigate the assumptions of independence between variables that are necessary in the joint probability method. The...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012